Correlation chart for AP Precalculus LO 1.1.B Varying together (graphical) College Board AP Precalculus LO and EK codes are found in the Course and Exam Description available at https://apcentral.collegeboard.org/courses/ap-precalculus/course OpenStax Precalculus 2e is a free textbook at https://openstax.org/details/books/precalculus-2e This document is not endorsed or affiliated with the College Board, AP, or OpenStax. | Example | Requirement | Title | Reward | Correlation | |---|--|---|---|------------------------------| | 2 + · · · · · · · · · · · · · · · · · · | □ Have function f mapping input values of independent variable x to corresponding output values of dependent variable y □ The set of ordered pairs of f is $\{(x,y) x\in X,y=f(x)\}$ □ Figure G is constructed by plotting each ordered pair on the xy coordinate plane □ with values of x represented along the horizontal axis □ and corresponding values of y represented along the vertical axis | → Definitions of graph of a function ← | Figure G is the graph of function f . | AP Precalculus EK
1.1.B.1 | | | \Box Figure G is the graph of function f . | → Properties of a graph of a function ← | Figure <i>G</i> displays a set of input value-
output value pairs. Figure <i>G</i> shows how input values and
output values vary [together]. | | | | □ Have function f mapping input values of independent variable x to corresponding output values of dependent variable y □ x has a related quantity or quality θ (could be a feature of a real-life application scenario) □ y has a related quantity or quality ϕ (could be a feature of a real-life application scenario) □ Speaker S wants to communicate to listener L information helpful for drawing a graph of function f | → AP Precalculus EK 1.1.B.2 ← | Speaker S can try the following: Describe a manner in which θ can change. Describe a manner in which φ correspondingly changes (or doesn't change). Listener L can use the above description from speaker S to try to draw a graph of function f. (The description below is not strictly part of AP Precalculus EK 1.1.B.2, but helpful for clarification): Use the described manner in which θ can change to identify a corresponding manner in which x can change. Use the described corresponding manner in which φ changes (or doesn't change) to identify a corresponding manner in which y changes (or doesn't change). Use the identified corresponding changes in x and y to narrow down the choice of possible graphs. | AP Precalculus EK
1.1.B.2 | Correlation chart for AP Precalculus LO 1.1.B Varying together (graphical) | Example | Requirement | Title | Reward | Correlation | |---------|--|---|--|------------------------------| | | $\hfill\Box$ Have function f mapping input values of independent variable x to corresponding output values of dependent variable y | → | Graph G of function f is concave up on interval I . | AP Precalculus EK
1.1.B.3 | | | \square Figure G is the graph of function f . | Definition of | | | | | $\square X = \{x_1, x_2, x_3, \dots\} \text{ is the domain of } f$ | concave up | | | | | \Box <i>I</i> is a contiguous interval in <i>X</i> | ← | | | | | \Box Throughout <i>I</i> , the rate of change of <i>f</i> is increasing | | | | | | \square Have function f mapping input values of independent variable x to corresponding output values of dependent variable y | → | Graph G of function f is concave down on interval I . | AP Precalculus EK
1.1.B.4 | | | \square Figure G is the graph of function f . | Definition of | | | | | $\square X = \{x_1, x_2, x_3, \dots\} \text{ is the domain of } f$ | concave down | | | | | \Box <i>I</i> is a contiguous interval in <i>X</i> | ← | | | | | \Box Throughout <i>I</i> , the rate of change of f is decreasing | | | | | | ☐ Have function <i>f</i> mapping input values of independent variable <i>x</i> to corresponding output values of dependent variable <i>y</i> | → Thm: Correspondence between zero of a function and whether graph of function intersects x-axis ← | Graph G of function f intersects the x-axis at $x = a$. | AP Precalculus EK | | | □ Figure G is the graph of function f . $□$ $f(a) = 0$ | → Definition of zero of a function ← | a is a zero of function f . | |